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Abstract
Five anticommuting property coordinates can accommodate all the known
fundamental particles in their three generations plus more. We describe the
points of difference between this scheme and the standard model and show how
flavour mixing arises through a set of expectation values carried by a single
Higgs superfield.

PACS numbers: 11.10.Kk, 11.30.Hv, 11.30.Pb

1. Property from anticommuting coordinates

The standard model appears to be on a firm footing with many experimental verifications of
particle states, interactions and decays. Yet there is some uneasiness in the physics community
about the plethora of couplings and masses (that are tied to 20 or more parameters) and a lack
of understanding about the ‘generation problem’. Symmetry schemes which link the three
families have been proposed aplenty and they attempt to explain the character of flavour mixing
in weak interactions by invoking various relations between the mixing parameters due to some
assumed underlying idea, such as permutation subsymmetries, texture zeros, seesaw effects,
etc. Great efforts have gone into justifying each proposal but none stands out and certainly no
consensus has been reached on the correct description, even though the VUD matrix elements
are quite circumscribed today, in contrast to VLN . Thus one is led to investigate alternative
approaches which may be more predictive.

Recently we have proposed a scheme [1] where five fundamental anticommuting
(complex) coordinates ζµ—appended to the four (real) space-time ones xm—are linked
to something tangible, namely flavour or property. The framework therefore describes
the where, when and what of an event. Fundamental particle properties are composites
[2, 3] corresponding to polynomials in ζ and are of course limited because of property
anticommutativity. Another nice feature is the effective reduction in ‘dimension’ due to the
well-known cancellation between fermionic and bosonic degrees of freedom. We outlined a
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general relativistic extension in which gravity fell into the x − x sector, gauge fields in the
x − ζ sector and the Higgs field in the ζ − ζ sector; however we shall not develop that side
here. Rather we will focus onto the particle aspects of the scheme, trying to comprehend
how the weak flavour mixing comes about and attempting to fix the mixing parameters with
resulting quark and lepton masses.

It is worth stressing that our scheme differs in a number of respects from the standard
model and these will be amplified in the next sections. The main difference is that there are
more than three generations—a feature of other models too. However in our scheme the third
and fourth coloured generations have quarks which are not weak isodoublet but isotriplet, with
accompanying quarks X having fermion number F = 1/3 and charge Q = −4/3. This might
be considered as an awful prediction, but considering how little one knows about the top quark,
it may not be so terrible. Another feature is the occurrence of colour sextet down-type quarks
S. Provided the extra particles are heavy in some sense, the X which can decay weakly into
conventional down quarks, and S which might provide a small admixture to nucleon states,
might impinge on newly discovered narrow (multiquark?) resonances that fleetingly appear
in some experiments. It is these differences from the standard picture that add spice to our
scheme but also make it vulnerable.

The allocation of fermionic states to ζ -polynomials through a superfield �, a function of
x and ζ , is studied in some detail in section 2, with emphasis on weak isospin assignments of
the combinations and their count supplied in section 3. (However, gory details are relegated
to the appendix.) Section 4 deals with the Higgs superfield � and its interaction with �.
Finally, the last section is an attempt to work out the flavour matrix of the quarks and leptons
engendered by eight real vacuum Higgs field components and a ninth complex component
that is a natural source of CP-violation. We then try to do some numerical work with those
expectation values in order to obtain the VUD and VLN mixing matrices; because there are a lot
of extra states we have to make some (frail) assumptions so as to achieve some simplification,
and anyone with experience in mixing matrices will know that there is obviously quite a lot
that could be improved here. But it is a start.

2. Superfields

Our scheme is founded on a set of five complex ζ for reasons discussed in an earlier
paper. Four is too few and six is far too many, so our construction does accord with
SU (5) and SO(10) grand unified models—and this is probably no accident. Recapitulating
previous work, the assignments of these property coordinates for charge and fermion
number are Q(ζ 0, ζ 1, ζ 2, ζ 3, ζ 4) = (0, 1/3, 1/3, 1/3,−1) and F(ζ 0, ζ 1, ζ 2, ζ 3, ζ 4) =
(1,−1/3,−1/3,−1/3, 1). ‘Neutrinicity’ is tied to ζ 0, ‘chromicity’ to ζ i where i = 1, 2, 3
are the three colours, and charged ‘leptonicity’ to ζ 4 in building up properties/flavours. These
superfields � and � (both overall Bose, note) are expanded in odd and even powers of
ζ, ζ̄ , respectively. Thus the fermion field components sit in odd sectors and the bose field
components lie in the even sectors of these expansions:

�(x, ζ, ζ̄ ) =
∑

even r+r̄

(ζ̄ )r̄φ(r̄),(r)(x)(ζ )r , (1)

�α(x, ζ, ζ̄ ) =
∑

odd r+r̄

(ζ̄ )r̄ψα(r̄),(r)(x)(ζ )r . (2)

Having said that, the behaviours under the Lorentz group of � and �α are very different, so
these superfields are to be regarded as distinct and ought not to be combined in any way. A



Mass matrix 14737

nice way of depicting the component fields is to draw up a six-by-six magic square and look
at the entries therein.

There are so many fermionic ψ entries (namely 512) that they invite pruning. We do so
by tying reflection about the main diagonal to conjugation, a sensible choice since ζ ↔ ζ̄ , or

ψ
(c)

α(r̄),(r) = ψα(r)(r̄), φ(r̄),(r) = φ
†
(r)(r̄),

but also we apply another constraint that superfields are selfdual in some way, corresponding
to reflection about the cross-diagonal. (The dual operation × leaves quantum numbers intact.)
One particular way is to require � to be anti-selfdual as this exercises some embarrassing
states hiding in the square such as ζ̄0ζ̄4ζ

1ζ 2ζ 3 and ζ̄4ζ
0ζ 1ζ 2ζ 3 which possess F = −3 and

Q = 2, respectively. This condition also disposes of a neutrino-like state in the upper right
corner too, ζ 0ζ 1ζ 2ζ 3ζ 4, which may be a mixed blessing.

From hereon we focus on fermions that are colour singlets or triplets since we want to
concenrate on quarks and leptons. Colour sextets do arise as well but we shall ignore them for
now. Placing the up U,D,L,N states in the magic square produces the following table1:

r\r̄ 0 1 2 3 4 5

0 L1, N1, D
c
5 Lc

5, D1, U1

1 * L2,3, N2,3,D
c
3,6,7, U

c
3 Lc

6, D2, U2

2 * L4, N4, D
c
4,8, U

c
4 -

3 * * -
4 * * -
5 * * *

The full set of superfield components are normalized and listed in the appendix, from which
one may verify the entries above (- means part of the dual, while * means complex conjugate
about the diagonal). Before turning to the Higgs superfield �, we should mention that the
adjoint of � has to be defined with appropriate sign changes. For example with only one ζ ,
if one writes �α = ζ̄ψα + ψc

αζ , then one should take �̄α = −ψ̄αζ + ζ̄ ψ̄ cα . This convention
ensures that �̄� = ζ̄ ζ(ψ̄ψ + ψ̄cψc) = 2ζ̄ ζ ψ̄ψ, so that integration over ζ, ζ̄ yields 2ψ̄ψ .
(Without that sign change there would have been a cancellation between the field and charge
conjugate contributions.)

There are two more colour triplet quarks of interest; they are the companions of
U,D in the third and fourth generation, namely: X3 ∼ ζ̄0ζ̄1ζ

4(1 + ζ̄2ζ
2ζ̄3ζ

3)/2 and
X4 ∼ ζ̄0ζ̄1ζ

4(ζ̄2ζ
2 + ζ̄3ζ

3)/2. More about them anon.

3. Weak isopin assignments and new particle signatures

Just from the way the anticommuting model is constructed, it will not have escaped the
reader that leptonicity coordinates ζ 0, ζ 4 comprise a weak isodoublet, whereas the chromicity
coordinates ζ i are weak isosinglets. By the same reasoning, the conjugates −ζ̄4, ζ̄0 may be
expected to form an isodoublet. Quantifying this algebraically, define the raising and lowering
operators:

T+ = ζ 0∂4 − ζ̄4∂̄
0, T− = ζ 4∂0 − ζ̄0∂̄

4, (3)

where ∂µ ≡ ∂/∂ζµ and ∂̄µ ≡ ∂/∂ζ̄µ are independent derivatives because ζ is complex. Hence
the third component of weak isospin is given by

2T3 = [T+, T−] = ζ 0∂0 − ζ 4∂4 + ζ̄4∂̄
4 − ζ̄0∂̄

0. (4)
1 We have relabelled components in an earlier article to conform with coming weak isospin assignments and have
taken the opportunity to correct the U quarks count from three to four.
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It is thereby easy to establish that the polynomial (ζ̄0ζ
0 + ζ̄4ζ

4) and therefore its square
2ζ̄0ζ

0ζ̄4ζ
4 are weak isosinglets. Correspondingly, we have a weak isotriplet in the

combinations (−ζ̄4ζ
0, (ζ̄0ζ

0 − ζ̄4ζ
4)/

√
2, ζ̄0ζ

4).
With regard to the heavy generations, U,D together with X make up a weak isotriplet—

signifying a break from the standard model. Because X carry charge −4/3, they may decay
weakly to the D quarks. Colour singlet composites of X3,4 with traditional quarks U,D will
produce new meson states XŪ and XD̄ having charges −2 and −1, respectively; we can also
envisage baryon states formed as colour singlet combinations of X with two traditional quarks
U,D and one might look out for these too. Nor should it be forgotten that colour sextet quarks
with Q = −1/3 and F = 1/3 arise, being associated with the property combinations:

S(kl) ∼ [εijkζ l + εij lζ k]ζ̄i ζ̄j /4.

Thus a small part of proton could conceivably be the admixture ukulS
(kl), and so on. Perhaps

combinations such as these may have a connection to ephemeral narrow width multiquark
resonances found in some experiments.

Leaving such speculation aside, we are now in a position to summarize the weak isospin
multiplets of quarks and leptons, based on the table and the explicit forms listed in the appendix.
First, the leptons:

doublets :

(
N1,2,3,4

L1,2,3,4

)
; singlets : L5,6.

Second, the colour triplet quarks:

doublets :

(
U1,2

D1,2

)
; triplets :


U3,4

D3,4

X3,4


 ; singlets : D5,6,7,8.

Third, while we are at it, let us also list the vacuum expectation values of the anti-selfdual
Higgs superfield, again referring to the appendix:

singlets : M,A + B, C,D, E + F,G; in doublet : H,H∗; in triplet : A − B, E − F .

4. Strong interactions, gauge fields and couplings to matter

Since the strong interactions are associated with colour the generators are readily expressed
in terms of chromicity coordinates, namely we take the traceless part (to get SU (3)) of

T i
j = ζ i∂j + ζ̄j ∂̄

i , (5)

obeying the usual U(3) commutation relations,[
T i

j , T k
l

] = δk
j T

i
l − δi

l T
k
j . (6)

We thereby construct the matrix A = A
j

i

(
T i

j − δi
jT

k
k

/
3
)

to contain the eight gluon fields A in
much the same way that SU (2)L weak bosons are connected with the matrix

W = W 3T3 + (W +T− + W−T+)/
√

2,

where the weak isospin generators are given in equations (3) and (4).
It is quite straightforward to accommodate the standard model components in this scheme

since (at least for the first two families) we are dealing with all the quarks and leptons one is
accustomed to within the set (U1,2,D1,2, N1,2, L1,2). The only care needed is to ensure that left
and right fields are distinguished by their isospin and hypercharge assignments. There are two
ways to do this: one can either assume that the zeta coordinates for matter are specifically tied to
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full Dirac fields � and introduce appropriate chirality projection operators P± = (1 ± iγ5)/2,
or one can presume that � is a left handed to begin with2 and associate generators involving ζ

with left chirality but those involving ζ̄ with right chirality. In the first approach for gauging
the standard SU(3) × SU(2)L × U(1) we would construct the covariant derivative acting on
Dirac �:

γ · D ≡ γ · [∂ − igWP− − ig′B(Y−P− + Y+P+)], (7)

where

Y− = −(ζ 0∂0 + ζ̄0∂̄
0 + ζ 4∂4 + ζ̄4∂̄

4)/2, Y+ = −(ζ 4∂4 + ζ̄4∂̄
4).

In the second approach where ψ is left handed, we would take only one half of the isospin
operators, namely T+ = ζ 0∂4, T− = ζ 4∂0, T3 = (ζ 0∂0 − ζ 4∂4)/2 and correspondingly
Y = −(ζ 0∂0 + ζ 4∂4)/2 − ζ̄4∂̄

4. (This guarantees that the right-handed particle fields are
automatically weak isosinglets and is more elegant than the first approach.) Anyhow, with this
halved set of generators of the second approach acting on �L the covariant derivative reads

γ · D = γ · [∂ − igW − ig′BY]. (8)

These manoeuvres just beg the question as to why one cannot gauge a larger set of group
generators. Of course one can, like any unified gauge model, but unfortunately nature has
picked on the standard model subset, the vagary of picking on left-handed isospin being
particularly quirky. Ultimately our anticommuting coordinate scheme invites us to gauge the
full Sp(10) group for the ten real anticommuting properties, but then we would be hard pressed
to explain where lie all the other gauge fields, not to mention the problem of handling their
leptoquark components. Of course this difficulty is common to all unified schemes; the only
virtue of ours is that the extra particles and states are severely circumscribed and from the point
of view of ‘economy’ this is surely a distinct advantage; also we get a concrete realization of
the group structure.

One last point concerns gauge anomalies. It is clear that for the lowest two families,
which are common to our approach and the conventional one, there can be none, i.e. there
is complete cancellation between leptons and quarks, per generation. Although we have not
investigated what happens to the third generation which contains U,D,X in a triplet and must
be considered with some of the other states, it is fairly clear that the anomalies will disappear
again for the standard model gauging because SU (3) is vectorial, SU (2) has no anomalies and
the trace of the charge operator vanishes. As far as the unified gauge groups SU (5) or Sp(10)
are concerned it would be surprising if the same thing did not happen again, as this scheme
has a lot in common with SO(10) where we know there are no anomalies; for example the
first row of the magic square is simply a 16-fold of SO(10); however we readily admit that
the matter has not been defintively settled.

Finally, with regard to the Lagrangian for the gauge field, this can be obtained in the
same way through the extended space-time-property metric, outlined in an earlier paper [1]
for QED, but neglecting the gravitational part. It falls out of course as the non-Abelian version
of the Maxwell Lagrangian.

5. Flavour mixing and mass matrices

The coupling of the superfield � to the vacuum Hiigs superfield 〈�〉 will induce flavour
mixing. This arises via the interaction 4

∫
d5ζ d5ζ̄ �̄〈�〉�, where we ignore an overall

2 But remember that fields reflected about the diagonal contain the left-handed antiparticles so we are in effect
including the right-handed particle states too.
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coupling constant for the purposes of this work (absorbing it in �). Based on the assumption
that the Higgs field is anti-selfdual like �, only nine expectation values make an appearance,
labelled M,A, . . . ,H of which just the final one is complex. (Bear in mind that without
antiduality there would be twice as many independent expectation values.) To see how to
arrive at the results below we give an example, the flavour mixing of the first two charged
leptons with one another, ignoring other components. First form the product �̄� and pick out
the relevant parts, namely

2�̄� ⊃ L̄1L1ζ̄4ζ
4(1 − 2ζ̄0ζ

0ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3) + L̄2L2ζ̄4ζ

4(−2ζ̄0ζ
0ζ̄1ζ

1ζ̄2ζ
2ζ̄3ζ

3)

+ (L̄1L2 + L̄2L1)ζ̄4ζ
4(ζ̄0ζ

0 − ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3) + · · · .

Then multiply by 〈�〉 and pick out the zeta-product factor (ζ̄µζµ)5/5!, needed for Berezin
integration. One obtains the terms

4
∫

d5ζ d5ζ̄ �̄〈�〉� ⊃ (2M + B)L̄1L1 + 2ML̄2L2 + (A + D)(L̄1L2 + L̄2L1) + · · ·
and so on. Proceeding in this way, we can list the entire set of flavour mixing mass matrices
Mi,j that arise, where the range of indices, i, j depends on the particle type. For charged
leptons the Hermitian matrix M reads

2M(L) →




2M + B A + D C + F E − G −H∗ H∗

A + D 2M −G C H∗ 0
C + F −G 2(M − E/

√
3) A − 2C/

√
3 0 0

E − G C A − 2C/
√

3 2M 0 0
−H H 0 0 2M + D A + B
H 0 0 0 A + B 2M




.

The neutrinos’ matrix is smaller (just 4 × 4):

2M(N) →




2M + A B + D C + E F − G
B + D 2M −G C
C + E −G 2(M − F/

√
3) B − 2C/

√
3

F − G C B − 2C/
√

3 2M


 ,

as is that of the U-quarks:

2M(U) →




2M + F/
√

3 B + C/
√

3 −H∗ 0
B + C/

√
3 2M 0 0

−H 0 2M + G/
√

3 2C/
√

3
0 0 2C/

√
3 2M


 ,

but the D-quarks’ 2M(D) matrix is very complicated, being 8 × 8:


2M + E√
3

A + C√
3

−H∗ 0 H∗ −H∗ 0 0

A + C√
3

2M 0 0 H∗ 0 0 0

−H 0 2M + G√
3

2C√
3

E−F√
6

+ A−B√
2

0 E−F√
3

B−A√
2

0 0 2C√
3

2M 2(F−E)√
6

0 A − B 0

H H E−F√
6

+ A−B√
2

2(F−E)√
6

2M + C√
3

E+F√
6

+ A+B√
2

2(G+C)√
3

D − G√
3

−H 0 0 0 E+F√
6

+ A+B√
2

2M − E+F√
3

A+B√
2

0 0 E−F√
3

A − B 2(G+C)√
3

− E+F√
3

2M − D − 2C√
6

0 0 B−A√
2

0 D − G√
3

A+B√
2

− 2C√
6

2M




.
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These flavour matrices may be diagonalized by unitary tranformations V in the usual
way: m(u) = V (U)M(U)V †(U), etc. And of course VUD ≡ V †(U)V (D) is also unitary in
the standard picture because all quarks are weak isodoublets. But this is not what occurs in
our scheme; to see what happens, focus on the charged weak interactions mediated by W±.
Realizing that its coupling to the weak isotriplets differ by a factor of

√
2 from those of the

isodoublets, we meet the terms

W +[(Ū 1D1 + Ū 2D2) +
√

2(Ū 3D3 + Ū 4D4 + D̄3X3 + D̄4X4)] + h.c.

which transcribe to the mass eigenvectors υ, δ:

W +ῡj [(V ∗
1j (U)V1k(D) + V ∗

2j (U)V2k(D)) +
√

2(V ∗
3j (U)V4k(D) + V ∗

4j (U)V4k(D))]δk

+ h.c. + WDX interaction-terms.

(Here the first three υ correspond to c, u, t quarks and the first three δ to s, d, b quarks.) No
longer is the effective VUD matrix unitary. Depending on the amount of flavour mixing of
weak isodoublets with isotriplets and isosinglets D5,..8, we anticipate that small departures
from unitarity will arise; also weak interactions of b and t quarks will be somewhat larger than
those of the first and second generations. The same remarks apply to the leptons in a modified
manner: while the first four generations of N,L are weak isodoublets, L5,6 are isosinglets and
it is their flavour mixing with the lighter Ls that may may induce a departure from unitarity of
the 4× 4 VLN matrix.

We are ready to make a stab at numerical values of masses and flavour mixings more in
an attempt to understand the mechanics than in trying to accurately reproduce known mixings.
It is futile to aim at exact figures for the known 12 lepton and quark masses plus all their
CKM-type mixings with only nine parameters, A to H, for we are looking at figures which
range from about 10−2 eV (for neutrinos) to 1011 eV (for the top quark), in other words 13
orders of magnitude, with many masses interspersed in that range. It is more likely that we can
achieve a fit to data with a Higgs superfield that is not self-dual as that doubles the numbers of
degrees of fitting freedom, but we leave that to future work. For the present we shall simply
ignore the leptons and stick with the four U quarks and eight D quarks as getting even these
to be roughly right represents a modicum of progress.

We have not searched through the whole of parameter space in presenting the following
set of values; rather our aim has been to get acceptable values for mu,md,mc,ms,mt ,mb and
ensure that the other quark masses are heavy, in regions not yet fully explored. The hope is
that this can yield flavour mixing matrices3 that are not outright silly. Here is what we have
adopted in units of MeV:

M = 3, C = −168 000, B = 78 + C/
√

3, A = 5 − C/
√

3,

D = 7700 000, E = 600, F = 2600, G = 70 000, H = 100

and thereby obtained

mu = 2, mc = 1510, mt = −175 000,

md = 6, ms = 354, mb = −4990.

(Negative mass eigenvalues are not particularly worrying since they can be reversed by a γ5

transformation on the eigenfields or equivalently a relative change in phase of the left- and
right-handed chiral components.) These numbers are satisfactory and so too are the masses of

3 We have not bothered to include a phase in the complex field H which is the source of CP-violation as it introduces
another layer of complexity.
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the other quarks which lie in the range above 175 GeV. (Actually there are strong indications
from the analysis that another D-quark may exist almost degenerate with the top.)

Less successful is our determination of the mixing angles; the mass diagonalized states
of U-quarks are not too bad, being given by the V -matrix:


c

u

t

υ4

.


 =




0.9987 0.052 4 × 10−6 5 × 10−4 .

−0.052 0.9987 6 × 10−10 3 × 10−4 .

3.8 × 10−4 −1.7 × 10−7 0.67 0.74 .

−3.4 × 10−4 −10−7 0.74 −0.67 .

. . . . .







U1

U2

U3

U4

.


 , (9)

but the D-quarks’ V -matrix is more problematic:


s

d

b

δ4

.


 =




0.9997 0.014 4 × 10−6 −5 × 10−4 .

−0.014 0.9999 6 × 10−8 7 × 10−6 .

0.02 0.00034 −1.5 × 10−4 3.8 × 10−5 .

−3.8 × 10−4 −10−7 −0.67 −0.74 .

. . . . .







D1

D2

D3

D4

.


 , (10)

because it means that the b quark is largely D6 (an electroweak singlet!) which is very far from
conventional wisdom. This is a definite failure of our parameter choice. Given that we have
abandoned any attempt at fitting the (light) lepton masses, as is clear from the scales above,
we will not apologize any more. If one were to double the Higgs field expectation values by
discarding selfduality we would be in better shape all round, but that would require a search
through an 18-parameter space which is non-trivial!

In summary we reiterate the places where we differ from the standard model.

• We have at least four generations of quarks and leptons. Of the six charged leptons two
are weak isosinglets, and of the eight D-quarks four are weak isosinglets.

• The top and bottom quarks belong to a weak isotriplet, together with another quark which
we have designated X.

• The flavour mixing induced by the super-Higgs components can result in a VUD which
is not quite unitary because the third generation is an isotriplet; this would be a good
experimental test of our scheme.

• Colour sextet quarks with F = 1/3,Q = −1/3 arise in property combinations (ζ̄ )2ζ

where the zeta only carry chromicity. If baryons carry small admixtures of these sextets in
conjunction with ordinary u, d quarks this might help explain features of newly discovered
narrow width resonances that are interpreted as multiquarks.

Appendix. Normalized superfields

Here we list the anti-selfdual components of the superfields � and �, arranged so that after
Berezin integration they are properly normalized; our convention is that

∫
d5ζ d5ζ̄ (ζ̄µζµ) ≡

−5! We only list relevant parts that contain leptons and colour triplet quarks, these being fields
of primary interest, and start with red U-quarks; the latter are associated with (red) label 1 in
the ζ expansion—not to be confused with the flavour counting subscripts carried by U:

2�U ⊃ 2�U red = [
ζ̄3ζ̄2ζ̄0U1 + Uc

1 ζ 0ζ 2ζ 3
]
(1 + ζ̄4ζ

4ζ̄1ζ
1)

+ [ζ̄3ζ̄2ζ̄0U2 + Uc
2 ζ 0ζ 2ζ 3](ζ̄1ζ

1 + ζ̄4ζ
4)

+
[
ζ̄0ζ

1ζ 4U3 + Uc
3 ζ̄4ζ̄1ζ

0](1 + ζ̄2ζ
2ζ̄3ζ

3)

+
[
ζ̄0ζ

1ζ 4U4 + Uc
4 ζ̄4ζ̄1ζ

0](ζ̄2ζ
2 + ζ̄3ζ

3). (A.1)
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Because this is the first time we encounter it, let us also spell out the adjoint components,
taking due care with sign changes:

2�̄U ⊃ 2�̄U red = [
Ū 1ζ

0ζ 2ζ 3 − ζ̄3ζ̄2ζ̄0Ū
c
1

]
(1 + ζ̄4ζ

4ζ̄1ζ
1)

+
[
Ū 2ζ

0ζ 2ζ 3 − ζ̄3ζ̄2ζ̄0Ū
c
2

]
(ζ̄1ζ

1 + ζ̄4ζ
4)

+
[
Ū3ζ̄4ζ̄1ζ

0 − ζ̄0ζ
1ζ 4Ū c

3

]
(1 + ζ̄2ζ

2ζ̄3ζ
3)

+
[
Ū4ζ̄4ζ̄1ζ

0 − ζ̄0ζ
1ζ 4Ū c

4

]
(ζ̄2ζ

2 + ζ̄3ζ
3). (A.2)

One may readily check that
∫

d5ζ d5ζ̄ (�̄U red�U red) = (Ū 1U1 + Ū 2U2 + Ū 3U3 + Ū 4U4).
Next we list the red down-type quark field components, again designated by (red) label 1

so far as the ζ coordinates are concerned. It contains twice as many pieces as the up-type
quarks:

2�̄D ⊃ 2�̄D red = [
ζ̄3ζ̄2ζ̄4D1 + Dc

1ζ
4ζ 2ζ 3

]
(1 + ζ̄0ζ

0ζ̄1ζ
1)

+
[
ζ̄3ζ̄2ζ̄4D2 + Dc

2ζ
4ζ 2ζ 3

]
(ζ̄1ζ

1 + ζ̄0ζ
0)

+
[
ζ̄1D

c
3 + D3ζ

1
]
(ζ̄0ζ

0 − ζ̄4ζ
4)(1 + ζ̄2ζ

2ζ̄3ζ
3)/

√
2

+
[
ζ̄1D

c
4 + D4ζ

1](ζ̄2ζ
2 + ζ̄3ζ

3)(ζ̄0ζ
0 − ζ̄4ζ

4)/
√

2

+
[
ζ̄1D

c
5 + D5ζ

1](1 − ζ̄2ζ
2ζ̄3ζ

3ζ̄0ζ
0ζ̄4ζ

4)

+
[
ζ̄1D

c
6 + D6ζ

1
]
(ζ̄0ζ

0 + ζ̄4ζ
4)(1 − ζ̄2ζ

2ζ̄3ζ
3)/

√
2

+
[
ζ̄1D

c
7 + D7ζ

1
]
(ζ̄2ζ

2 + ζ̄3ζ
3)(1 − ζ̄0ζ

0ζ̄4ζ
4)/

√
2

+
[
ζ̄1D

c
8 + D8ζ

1
]
(ζ̄0ζ

0ζ̄4ζ
4 − ζ̄2ζ

2ζ̄3ζ
3). (A.3)

Note that the last four components are weak isosinglets. Here again,
∫

d5ζ d5ζ̄ (�̄D red�D red) =
(D̄1D1 + D̄2D2 + D̄3D3 + D̄4D4 + D̄5D5 + D̄6D6 + D̄7D7 + D̄8D8).

Turning to leptons, begin with the four neutrinos contained in

2�N = [
ζ̄0N1 + Nc

1ζ 0
]
(1 − ζ̄4ζ

4ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3)

+
[
ζ̄0N2 + Nc

2ζ 0
]
(ζ̄4ζ

4 − ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3)

+
[
ζ̄0N3 + Nc

3ζ 0
]
(ζ̄iζ

i − ζ̄4ζ
4ζ̄j ζ

j ζ̄kζ
k/2)/

√
3

+
[
ζ̄0N4 + Nc

4ζ 0
]
(ζ̄iζ

i ζ̄4ζ
4 − ζ̄j ζ

j ζ̄kζ
k/2)/

√
3. (A.4)

and then write out the charged leptons (very similar except for an extra two entries that are
weak isospin singlets):

2�L = [
ζ̄4L1 + Lc

1ζ
4
]
(1 − ζ̄0ζ

0ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3)

+
[
ζ̄4L2 + Lc

2ζ
4
]
(ζ̄0ζ

0 − ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3)

+
[
ζ̄0L3 + Lc

3ζ
0
]
(ζ̄iζ

i − ζ̄0ζ
0ζ̄j ζ

j ζ̄kζ
k/2)/

√
3

+
[
ζ̄4L4 + Lc

4ζ
4](ζ̄iζ

i ζ̄0ζ
0 − ζ̄j ζ

j ζ̄kζ
k/2)/

√
3

+
[
ζ̄3ζ̄2ζ̄1L

c
5 + L5ζ

1ζ 2ζ 3
]
(1 + ζ̄0ζ

0ζ̄4ζ
4)

+
[
ζ̄3ζ̄2ζ̄1L

c
6 + L6ζ

1ζ 2ζ 3
]
(ζ̄0ζ

0 + ζ̄4ζ
4). (A.5)

Altogether one may verify that
∫

d5ζ d5ζ̄ (�̄N�N +�̄L�L) = (N̄1N1 +N̄2N2 +N̄3N3 +N̄4N4 +
L̄1L1 + L̄2L2 + L̄3L3 + L̄4L4 + L̄5L5 + L̄6L6), which is perfectly satisfactory.
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Finally we spell out the parts of the Higgs superfield that have Q = F = 0. Having
assumed anti-selfduality these components read:

2〈�〉 = M(1 − ζ̄0ζ
0ζ̄1ζ

1ζ̄2ζ
2ζ̄3ζ

3ζ̄4ζ
4) + A(ζ̄0ζ

0 − ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3ζ̄4ζ

4)

+ B(ζ̄4ζ
4 − ζ̄1ζ

1ζ̄2ζ
2ζ̄3ζ

3ζ̄0ζ
0) + C(ζ̄iζ

i − ζ̄0ζ
0ζ̄4ζ

4ζ̄j ζ
j ζ̄kζ

k/2)/
√

3

+ D(ζ̄0ζ
0ζ̄4ζ

4 − ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3) + E(ζ̄iζ

i ζ̄0ζ
0 − ζ̄4ζ

4ζ̄j ζ
j ζ̄kζ

k/2)/
√

3

+ F(ζ̄iζ
i ζ̄4ζ

4 − ζ̄0ζ
0ζ̄j ζ

j ζ̄kζ
k/2)/

√
3

+ G(ζ̄iζ
i ζ̄j ζ

j /2 − ζ̄4ζ
4ζ̄0ζ

0ζ̄kζ
k)/

√
3

+ [Hζ 1ζ 2ζ 3ζ 4 + H∗ζ̄4ζ̄3ζ̄2ζ̄1](1 − ζ̄0ζ
0). (A.6)

Except for H all other expectation values are real. In fact it is the H components that
are responsible for CP-violation in this scheme. Checking it all out,

∫
d5ζ d5ζ̄2〈�〉2 =

M2 +A2 +B2 + C2 +D2 + E2 +F2 + G2 + 2H∗H. We stress that relaxing selfduality for � will
double the number of independent expectation values and provide more freedom in the mass
matrices.
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